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Exercise 1

(a) The assumption f(€) = 0 for all £ € R implies that
A© - B = [ j)e e dr—0.

(b) Consider A defined on the upper half plane. Note that for z = u + iv, v > 0, and
x < t, we have

|[f(@)e 220 = [ f(a)]™ 0 < | f(2)].

By the moderate decrease of f, A(z) is well-defined and bounded. To see that A is
holomorphic on the upper half plane, we argue as in Theorem 3.1: define A,(z) =
ffn f(z)e2™#(@=1) dg and observe that A, — A uniformly because |A,(z) — A(z)| <
f__; |f(z)|dz and f has moderate decrease. Each A,, is holomorphic by Theorem 5.4 of
Chapter 2 and so is the uniform limit A.

Similarly, B is holomorphic and bounded on the lower half plane. Part (a) and the
symmetry principle (Theorem 5.5 of Chapter 2) imply that F' is entire and bounded,
hence a constant. In fact this constant is 0, since the boundedness of f implies that (on
the upper half plane)
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¢ C
|A(u + iv)| < C/ 2@t dp =
— 00

so that A(z) — 0 as Im(z) — oc.

(¢) The first statement follows from F(0) = 0 and the second from the continuity of f.

Exercise 3

Consider the function f(2) = x5 e~2™#¢ having simple poles at z = Fai with residue

+(2i)Let?™¢. When ¢ > 0, consider the contour from —R to R along the real axis
and then from R to —R along the semicircular arc C; in the lower half plane. Along
the arc z = Re® (with Im(z) < 0 and assume R > a),

_ a 27 Im(2)€ a
IO = ™ s

So [, f(z)dz — 0 as R — oo. Because the contour is clockwise oriented, the residue
R
theorem implies that
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The case ¢ < 0 is similar and uses the semicircular contour on the upper half plane. The
second statement of the question is by direct integration.



Exercise 7

(a) We first compute f(€) using residue theorem. Consider the function g(z) = (7 +

2)"ke=2m&% with an order k pole at z = —7 (in the lower half plane) with
1 d\*' (—2mi€)kt ,
—_ el —2milz _ 27rz§7—.
Fe=—r I = ) (dz> ¢ e (B €

Similar to exercise 3, for £ > 0, consider the semicircular contour in the lower half plane.
Since k > 2, the same argument shows that [ g(z)dz — 0 as R — oo, and thus the
R

residue theorem gives

~ i e—27ri£w . —2mi F — TigT
f(&) = /_Oo mdfﬂ = —2TireS,=—r g = ((k—l))!gk Le2mier

For ¢ < 0, the same argument in the upper half plane shows that f (£) = 0 because the
contour does not enclose the pole. The desired identity is now a direct consequence of
the Poisson summation formula.

(b) Apply (a) with k = 2. Note that |e?™7| < 1 since Im 7 > 0, so we have the following
identity (viewing as a function of 7):
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(1 — e2miT)2 - (e=miT — miT)2 - 4sin2(7rr)'

(c) Yes, because both sides are meromorphic functions on C that have the same poles
and agree on the upper half plane.

Exercise 10
Let [ > 0. First note that for z =« + it and { =& +in € S; (i.e. |n| <), we have

|f(z)e—27rizq| _ |f(1' _’_it)‘e%r(zn-i-tf) < ce—ax2+2wxnebt2+2wt5 (1a)

2 2 = 2 3.2
< ce™ +27rl\m\ebt +27té < Cle—az ebt —i—27‘rt§7 (1b)

for any 0 < @ < a and some constant ¢; indeppndent of z and ¢ € S; (but depen(}ent on
a,a,l). Similar to Theorem 3.1, observe that f(¢) is holomorphic in every S;: let f,,(¢) =
ffn f(x)e=2™¢ dz, each holomorphic by Theorem 5.4 of Chapter 2. Equation (1b) with
¢ = 0 and the integrability of e~ imply that |f,(¢) — £(¢)] < 1 f\zlzn e~ gy — 0
uniformly in ¢ € S}, as n — oo. So f is holomorphic by Theorem 5.2 of Chapter 2.

Next, with ¢ fixed, we show that the contour of integration can be changed to {Im(z) =
y} for any fixed y € R, i.e. we have

) = /jO f(z)e™ 2™ dy = /jo f(x +iy)e 2T @HwC gy (2)

(The integrals on both sides are well-defined by (1b).) To prove (2) when y # 0, con-
sider the entire function f(z)e~27*¢ and the rectangular contour defined by the vertices
—R,R,R +iy,—R +iy. As in the proof! of Theorem 2.1, it suffices to show that the
integrals along the vertical segments of the contour tends to 0 as R — oco. By (1b),
along the left vertical segment, we have
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n fact, if n = 0, we could just apply the proof in Theorem 2.1.



as R — co. And the same holds for the right vertical segment. This proves (2).

Finally, we estimate | f ()] using the shifted contour: by (1a), we have
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‘fA(C)| < ceby2+27ry§/ e—aw2+27rw77 dr
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where b’ > 0 is obtained by completing square (and is independent of 7); while ¢’ is

some constant also independent of ( = £ 4. Consider a sufficiently small d > 0 so that
a’ :=2md — bd? > 0, and then take y = —d¢ in the above to obtain the desired estimate
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