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Exercise 1

(a) The assumption f̂(ξ) = 0 for all ξ ∈ R implies that

A(ξ)−B(ξ) = e2πiξt
∫ ∞
−∞

f(x)e−2πiξx dx = 0.

(b) Consider A defined on the upper half plane. Note that for z = u + iv, v > 0, and
x ≤ t, we have

|f(x)e−2πiz(x−t)| = |f(x)|e2πv(x−t) ≤ |f(x)|.

By the moderate decrease of f , A(z) is well-defined and bounded. To see that A is
holomorphic on the upper half plane, we argue as in Theorem 3.1: define An(z) =∫ t
−n f(x)e−2πiz(x−t) dx and observe that An → A uniformly because |An(z) − A(z)| ≤∫ −n
−∞ |f(x)| dx and f has moderate decrease. Each An is holomorphic by Theorem 5.4 of

Chapter 2 and so is the uniform limit A.

Similarly, B is holomorphic and bounded on the lower half plane. Part (a) and the
symmetry principle (Theorem 5.5 of Chapter 2) imply that F is entire and bounded,
hence a constant. In fact this constant is 0, since the boundedness of f implies that (on
the upper half plane)

|A(u+ iv)| ≤ C
∫ t

−∞
e2πv(x−t) dx =

C

2πv
,

so that A(z)→ 0 as Im(z)→∞.

(c) The first statement follows from F (0) = 0 and the second from the continuity of f .

Exercise 3

Consider the function f(z) = a
a2+z2 e

−2πizξ having simple poles at z = ±ai with residue

±(2i)−1e±2πaξ. When ξ ≥ 0, consider the contour from −R to R along the real axis
and then from R to −R along the semicircular arc C−R in the lower half plane. Along
the arc z = Reiθ (with Im(z) < 0 and assume R > a),

|f(z)| = a

|a2 + z2|
e2π Im(z)ξ ≤ a

R2 − a2
.

So
∫
C−R

f(z) dz → 0 as R → ∞. Because the contour is clockwise oriented, the residue

theorem implies that∫ ∞
−∞

a

a2 + x2
e−2πixξ dx = −2πi resz=−ai f = πe−2πaξ = πe−2πa|ξ|.

The case ξ < 0 is similar and uses the semicircular contour on the upper half plane. The
second statement of the question is by direct integration.
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Exercise 7

(a) We first compute f̂(ξ) using residue theorem. Consider the function g(z) = (τ +
z)−ke−2πiξz, with an order k pole at z = −τ (in the lower half plane) with

resz=−τ g =
1

(k − 1)!

(
d

dz

)k−1
e−2πiξz

∣∣∣
z=−τ

=
(−2πiξ)k−1

(k − 1)!
e2πiξτ .

Similar to exercise 3, for ξ > 0, consider the semicircular contour in the lower half plane.
Since k ≥ 2, the same argument shows that

∫
C−R

g(z) dz → 0 as R → ∞, and thus the

residue theorem gives

f̂(ξ) =

∫ ∞
−∞

e−2πiξx

(τ + x)k
dx = −2πi resz=−τ g =

(−2πi)k

(k − 1)!
ξk−1e2πiξτ .

For ξ ≤ 0, the same argument in the upper half plane shows that f̂(ξ) = 0 because the
contour does not enclose the pole. The desired identity is now a direct consequence of
the Poisson summation formula.

(b) Apply (a) with k = 2. Note that |e2πiτ | < 1 since Im τ > 0, so we have the following
identity (viewing as a function of τ):

∞∑
m=1

me2πimτ =

(
1

2πi

∞∑
m=0

e2πimτ
)′

=

(
1

2πi(1− e2πiτ )

)′
=

e2πiτ

(1− e2πiτ )2
=

1

(e−πiτ − eπiτ )2
= − 1

4 sin2(πτ)
.

(c) Yes, because both sides are meromorphic functions on C that have the same poles
and agree on the upper half plane.

Exercise 10

Let l > 0. First note that for z = x+ it and ζ = ξ + iη ∈ Sl (i.e. |η| < l), we have

|f(z)e−2πizζ | = |f(x+ it)|e2π(xη+tξ) ≤ ce−ax
2+2πxηebt

2+2πtξ (1a)

≤ ce−ax
2+2πl|x|ebt

2+2πtξ ≤ c1e−ãx
2

ebt
2+2πtξ, (1b)

for any 0 < ã < a and some constant c1 independent of x and ζ ∈ Sl (but dependent on

a, ã, l). Similar to Theorem 3.1, observe that f̂(ζ) is holomorphic in every Sl: let f̂n(ζ) =∫ n
−n f(x)e−2πixζ dx, each holomorphic by Theorem 5.4 of Chapter 2. Equation (1b) with

t = 0 and the integrability of e−ãx
2

imply that |f̂n(ζ) − f̂(ζ)| ≤ c1
∫
|x|≥n e

−ãx2

dx → 0

uniformly in ζ ∈ Sl, as n→∞. So f̂ is holomorphic by Theorem 5.2 of Chapter 2.

Next, with ζ fixed, we show that the contour of integration can be changed to {Im(z) =
y} for any fixed y ∈ R, i.e. we have

f̂(ζ) =

∫ ∞
−∞

f(x)e−2πixζ dx =

∫ ∞
−∞

f(x+ iy)e−2πi(x+iy)ζ dx. (2)

(The integrals on both sides are well-defined by (1b).) To prove (2) when y 6= 0, con-
sider the entire function f(z)e−2πzζ and the rectangular contour defined by the vertices
−R,R,R + iy,−R + iy. As in the proof1 of Theorem 2.1, it suffices to show that the
integrals along the vertical segments of the contour tends to 0 as R → ∞. By (1b),
along the left vertical segment, we have∣∣∣∣∫ y

0

f(−R+ it)e−2πi(−R+it)ζ dt

∣∣∣∣ ≤ Ce−ãR2

→ 0

1In fact, if η = 0, we could just apply the proof in Theorem 2.1.
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as R→∞. And the same holds for the right vertical segment. This proves (2).

Finally, we estimate |f̂(ζ)| using the shifted contour: by (1a), we have

|f̂(ζ)| ≤ ceby
2+2πyξ

∫ ∞
−∞

e−ax
2+2πxη dx

= ceby
2+2πyξeb

′η2
∫ ∞
−∞

e−a(x−
√
b′/aη)2 dx

≤ c′eby
2+2πyξeb

′η2 ,

where b′ > 0 is obtained by completing square (and is independent of η); while c′ is
some constant also independent of ζ = ξ+ iη. Consider a sufficiently small d > 0 so that
a′ := 2πd− bd2 > 0, and then take y = −dξ in the above to obtain the desired estimate

|f̂(ζ)| ≤ c′e−a
′ξ2+b′η2 .
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